
Framing-Based Camera Tool for Artists
in Game Development

Mathias K. Berthelsen
mkbe11@student.aau.dk

Gustav Dahl
gdahl11@student.aau.dk

Benjamin N. Overgaard
boverg11@student.aau.dk

Andreas M. Thomsen
amth11@student.aau.dk

ABSTRACT
Camera control in games is important, for example to cre-
ate cinematic graphic effects or to guide the attention of
the player. Unlike the camera in pre-rendered movies, a
game camera should adapt to the player’s movements. This
paper describes the design of a tool that allows artists to
frame the camera in games where the player moves along a
pre-defined path. To this end, we used participatory design
methods to understand how artists typically work with com-
puter animations and found that they prefer to work with
keyframing animation. This concept has been incorporated
into the proposed Framing-based Camera Tool (FCT) in the
form of framings. A framing consists of an influence point
and a group of camera settings. Artists are able to define a
group of framings by adjusting the position, orientation and
field of view of the camera. Then, the game’s camera in-
terpolates between the framings automatically based on the
player’s position. Through an evaluation of FCT, we show
that it allows artists to create and design dynamic camera
animations.

General Terms
Game development

Keywords
Game development, camera system, interpolation, workflow,
participatory design, collaboration

1. INTRODUCTION
There are many ways to design camera motions in games.
Fundamentally, one can distinguish between cinematic se-
quences and interactive gameplay. These two are typically
considered mutually exclusive, because cinematic sequences
per definition are non-interactive [7]. However, it is possi-
ble to mix those two, such that the camera can dynamically
adapt to game events and player input. This means that a
camera sequence does not have to be viewed in exactly the
same way every time.

This paper presents an approach to creating a tool for a
specific group of artists whose main work domain is pre-
rendered animation. Creating a tool for these artists is
challenging since they have knowledge and experience work-
ing with movies, which is a pre-rendered medium, whereas
games are dynamic and interactive. Our tool allows users to
define camera movements in a game where the player char-
acter moves along pre-defined paths. It has been designed
in cooperation with the artists using methods from partici-
patory design. The main finding from the initial participa-
tory exercises was that the artists are quite comfortable with
using keyframing animations. Therefore, our tool is based
on the concept of framings and was named Framing-based
Camera Tool. Our evaluation of the proposed camera tool
shows that it lets artists design and create dynamic camera
animations.

The outline of the paper is as follows. We discuss related
work in the next section. In Section 3, we describe how
the artists contributed to the design of FCT. Section 4 goes
through the design and implementation of FCT, while Sec-
tion 5 shows how we evaluated the tool. We conclude with
a summary and future work in Section 6.

2. RELATED WORK
Automatic camera control is an active research field. In
3D computer animation, a virtual environment is rendered
in frames from a specific point of view. This is a complex
process that involves technical and artistic tasks, typically
requiring the work of several professionals for a long time
period [5]. Developing a system that makes the camera an-
imation automatic can be beneficial at both a professional
level (to reduce cost) or at an amateur level (to increase
quality). Systems that emphasize automatic behaviour have
been proposed [4, 5]; these use an automatic approach for
controlling a virtual camera driven by AI techniques. How-
ever, the focus of the camera tool proposed in this work is
on artistic control. Hence, an automatic approach is not
feasible.

In a behind-the-scenes documentary, the developers behind
the PlayStation game series God of War talk about the im-
portance of being able to frame the scene [16]. Depending
on the context, it is important for them to frame the scene
so players know where they should be heading next. They
use camera zones to determine what area the player is in
and then activate the corresponding camera for that zone.
This example shows that it is important that the artists are

1



Figure 1: An example of a camera interpolation between three framings (A, B and C). The framings contain
position, rotation and field of view. As the player character (orange cube) moves, the camera follows him by
interpolating between the framings.

able to crate framings themselves.

The main requirement of a framing-based camera tool for
games is that it can go from one camera setting (A) to an-
other camera setting (B) depending on the player’s position
or certain events. For instance, A and B can be different
in position, rotation and field of view. Figure 1 shows an
example of how the camera interpolates between three po-
sitions.

The tool Camera Path Animator [6] can be used for creat-
ing animated cameras within the game engine Unity [15]. As
the name suggests, it works by animating the camera along
a specified path, which can have various shapes (e.g., Bezier
and Hermite curves). The tool is primarily targeted towards
creating cameras that move linearly along a set path, i.e.,
for use in cinematic sequences. It provides various ways of
inserting, moving and deleting points, as well as changing
settings such as field of view, speed, interpolation type and
easing. Additionally, it has an event system for triggering
certain events at certain points in the path. For our tool,
it was important that the artists can create framings them-
selves and that the interface in general is designed for the
artists; hence, we chose not to extend the Camera Path An-
imator, but instead took inspiration from it.

Participatory design has been defined as the participation
of users in the design process of a system that is to be im-
plemented in an organization [10]. By involving users in
the design, their skills, experiences, and interests are taken
into consideration, thereby increasing the likelihood that the
system will be useful to them.

According to participatory design researchers, it is impor-
tant that there is an active cooperation between the de-
signer and the user [10]. This results in the designer gaining
knowledge of the user’s current work practices, and the user
gaining knowledge of the technology being developed. It is
also important that users take an active part in the analysis
of needs, selection of technology, design and prototyping, as
well as organizational implementation.

3. PARTICIPATORY DESIGN FINDINGS
The user group during the participatory design was a team
of six third-year students from The Animation Workshop in
Viborg, Denmark, who were developing a 3D point-and-click

adventure game [9]. The team consisted of students from
two different educations of the school: Character Anima-
tion and Computer Graphic Arts [8]. The students will be
referred to as the artists. All the artists were familiar with
making animation films with Autodesk Maya; however, it
was the first time they tried to make a game. At the start
of the project, the artists received an introductory course to
the Unity game engine.

To create a tool that takes the artists’ current skills and
experience into consideration, thereby easing their learning
curve, we used techniques from participatory design [3].

3.1 Activities
Four different activities using a combination of participatory
design techniques were conducted with four artists from the
team who had an interest in working with FCT. All activ-
ities were combined with open interviews as well as video
recorded for further analysis. Each activity took 15-30 min-
utes per person.

The first activity, was an observation [3] of the artists work-
ing in Maya and Unity. The artists were asked to think-
aloud [3] while performing simple tasks relevant to camera
work in Maya and Unity. The purpose of this activity was
to gain first-hand experience with the artists’ current work
practices in Maya as well as an understanding of how famil-
iar they were with Unity.

Second, the artists were asked to list and sketch the features
that they wanted the most FCT. This activity took inspira-
tion from the freehand drawing technique [3]. The purpose
of the activity was to get a foundation for which tasks the
artists wanted to be able to do with the tool.

After sketching, the artists were asked to visualize the in-
terface of the camera tool with a set of pre-made buttons
and windows made of paper based on Unity’s interface (see
Figure 2). The activity took inspiration from the collage
technique [3] and its purpose was to get a foundation for the
interface design.

The final activity was made after the first design iteration of
FCT. At this point, the features that were assessed as most
important for the artists had been implemented; however, it
was still necessary to receive input from the artists. Using

2



Figure 2: The collage activity. The camera settings
and general interface were made out of paper.

the same techniques as in the initial observation, we had the
artists perform simple tasks in Unity with FCT. From this,
it was possible to see which changes should be made to the
tool, especially regarding the interface.

3.2 Findings
From the previously-mentioned activities, we found that the
artists in general wanted features that are similar to those
found in Maya.

The artists deemed it essential that FCT should give them
the freedom to frame the scene as they wanted, in order to
focus on different elements in the scene.

An important feature that the artists used heavily in Maya
when animating a camera in a scene is keyframing, i.e., the
artists placed points on a timeline, and at each point adjust
the camera according to how they wanted to frame the scene.
During the initial observations, it was clear that many of
the artists preferred the Look Through Selected [2] feature
in Maya to adjust cameras.

When the artists needed control over how the camera should
interpolate between keyframes, they used Maya’s Graph Ed-
itor [1], which allowed them to adjust the interpolation for
all camera settings using animation curves [1]. The artists
often adjusted multiple curves at the same time and in the
same window.

We also observed that all of the artists worked with two mon-
itors and that they often spread Maya’s interface out across
both monitors to take better advantage of the space. They
did this by creating separate windows for certain features.

A common request from all of the artists was the ability to
quickly preview their changes. Instead of having to start the
game and navigate the player character to a specific framing,
the artists wanted to quickly jump to a specific framing to
test out how it feels and looks.

Finally, we observed that the artists found Unity’s Flythrough
Mode [14]) particularly useful. This feature lets the player
fly around with the scene camera as if they were playing a
first-person game.

4. FRAMING-BASED CAMERA TOOL (FCT)
In this chapter, we describe the main elements of the tool
that was developed with the artists. As mentioned in Sec-
tion 3.2, the artists worked with two monitors; hence, the
interface has been designed so they can drag elements of the
interface to either monitor as they please.

4.1 Framing Concept
As mentioned in Section 3.2, keyframing is essential for the
artists. In keyframe animation, each keyframe specifies a
state at a specific point in time. Additional frames (“in-
betweens”) are interpolated between these keyframes.

In contrast to movies, games usually don’t follow a linear
structure; thus, keyframes for the camera animation can’t
be associated with points in time. In our case, the player is
able to move freely on a pre-defined path. Therefore, FCT
associates keyframes with the player’s position in the game
world instead of time.

To avoid confusion with traditional keyframing, the keyframes
for the camera settings have been named framings. A fram-
ing consists of an influence point and a camera (see Figure
3). The camera holds all of the camera settings, such as
position and rotation of the camera, as well as the field of
view. The influence point only specifies a position. When
the player’s position is the same as an influence point, the
associated cameras will determine the in-game camera. This
means that the in-game camera will use the settings of this
camera. Moving between influence points causes an interpo-
lation between the associated camera. The interpolation can
be customized in a graph editor as requested by the artists.

Figure 3: Illustration of the framing concept. A
framing consists of an influence point and a camera.

4.2 Placing an Influence Point
In the current implementation of FCT, new influence points
snap to pre-defined path segments, which are connections
between path nodes. Each path segment keeps a list of as-
sociated influence points.

Influence points are represented by small diamond-shaped
icons (see Figure 4). The connection between an influence
point and a camera is indicated by a small line (see Figure
4). However, the influence point and the camera can be
moved and adjusted independently.

Clicking on the path creates a framing. Creating a fram-
ing while having another framing selected connects the two.
This connection is needed for manipulating the interpola-
tion. As described in Section 3.2, graph editors are an es-
sential tool for artists to adjust the interpolation between

3



keyframes. This has been implemented using the built-in
graph editor in Unity (see Figure 5).

Figure 4: Influence points are placed by holding
down the CTRL key and clicking with the mouse.
They snap to the path defined by the path nodes
(red cubes).

Since an influence point and its associated camera settings
constitute a framing, selecting either one selects the framing;
hence, both provide the same options in the settings window.

Figure 5: The graph editor can adjust the interpo-
lation of the position, rotation and field of view.

4.3 Adjusting a Camera
As mentioned in Section 3.2, the artists preferred the fly-
through mode in Unity. Besides the standard ways of editing
cameras, FCT provides three additional ways; the first two
can for example use the flythrough mode: snapshot, be the
camera and aim point. Snapshot sets the active camera to
the settings of the scene view camera. Be the camera enters
a mode in which the active camera is always at the scene
view camera until the artist exits the mode (see Figure 6).
With the aim point, the active camera automatically looks
in the direction of an aim point (see Figure 7). This aim
point can be moved in the scene view like any other object.

4.4 Previewing the Interpolation
As mentioned in Section 3.2, previewing is essential for the
artists’ work, FCT provides three ways of previewing the
interpolations. One way is to drag the player object around
along the path via the interactive preview. A second way is
to use the slider preview. Here, the artist can select a start
framing and an end framing and then drag a slider back and
forth, changing the interpolation accordingly. Additionally,
a“play”button can be pressed to play the interpolation with
the actual player velocity (see Figure 8).

Figure 7: The aim point (located near the purple
cylinder) allows for quick adjustments of the camera.

Figure 8: The slider provides a quick way to preview
the interpolation.

4



Figure 6: Pressing the green button puts the user in a special mode where the selected camera inherits
position and orientation data from the scene camera. Notice that in the right image, the scene view and
active camera have aligned and moved slightly. The preview image with the [Camera 2] label is how it will
look in the actual game.

4.5 Interpolation Between Framings
Each influence point is placed on the player path. The in-
terpolated camera settings (fi) are a function of the player’s
position Ppos, which is used to interpolate between the cam-
era settings c1 and c2 of the two influence points on the
path closest to the player’s position in both directions, with
weights w1 and w2 based on the positions of the influence
points.

fi = f(Ppos) = w1c1 + w2c2 (1)

The two closest influence points are found by a linear search
from the player’s position along the path segments in both
directions.

The weights w1 and w2 are then computed from the dis-
tances d1 and d2 travelled in both direction until encounter-
ing an influence point.

w1 = d1/(d1 + d2) (2)

w2 = 1 − w1 (3)

If there is no influence point in one direction, the distance in
that direction is zero. The artist is further able to manipu-
late the weights w1 and w2 for each camera setting through
the graph editor. Evaluating a curve at w1 produces new
weights for these camera settings that are associated with
the camera settings.

4.5.1 Path-Based Slider-Preview
For the slider preview, a player position Ppos is computed
from the given slider value ws (from 0 to 1) and the influence
points of the start and end framing.

Drawing from the same logic as in the interpolation, a lin-
ear search is performed from the influence point of the start
framing following the path in both directions, logging the
total distance travelled until the influence point of the end
framing is encountered. Using the total distance between
the start and end framing, the interval [0,1] of the slider
value is mapped to the sequence of the encountered influ-
ence points between the start and end framing. For slider
values mapped to positions between two influence points,
the position Ppos is computed using linear interpolation be-
tween these influence points.

5. EVALUATION
After designing and implementing FCT, we evaluated whether
it allows to successfully perform the tasks that it was origi-
nally designed for (described in Section 3).

5.1 Method
5.1.1 Participants

Two groups of participants took part in the evaluation: three
artists from the participatory design group and three artists
outside the participatory design group. Both groups were
students from The Animation Workshop [8]. Since the first
group was involved in designing FCT, they had previous
knowledge of the tool. The three other artists knew nothing
about FCT and were used as a control group to avoid this
bias.

5.1.2 Procedure
Each participant was evaluated individually (see Figure 10).
Besides the participant, a facilitator and an observer were
also present. The evaluation was split into seven parts:

1. Introduction, Consent and Demographic Questionnaire
2. Trying the Camera Path Animator
3. Basic Navigation in Unity
4. Training with FCT
5. Tasks with FCT
6. Creative use of FCT
7. Evaluation Questionnaire

During parts 3-6, the participants and their monitors were
recorded. The procedure was the same for all participants.
The evaluation sessions lasted for approximately 40-50 min-
utes each.

Introduction, Consent and Demographic
The participants were given a brief introduction and pre-
sented a consent form to allow video recording. The partic-
ipants started by answering a short demographic question-
naire.

Trying the Camera Path Animator
The participants were introduced to a small demo of Cam-
era Path Animator [6] (see Section 2). They were told to

5



Figure 9: The evaluation consisted of three parts, each with their own scene. The first scene was used to
learn about basic navigation in Unity. The second scene was used for the participants to try FCT. The third
scene was for the creative task where the participants created their own framings.

Figure 10: The participants used two monitors while
working with FCT.

move the player character around and notice how the cam-
era behaved accordingly. This was to give the participants
a context for the evaluation of FCT, as well as introduce
them to the concept of camera movements in an interactive
environment.

Basic Navigation in Unity
To ensure that all participants had a basic understanding of
how to navigate in Unity, the facilitator gave a brief oral in-
troduction to the basic functionality of Unity. This included
a short description of the essential windows in Unity (scene
view, game view, hierarchy and the inspector), as well as
how to move and rotate objects. The participants were in-
structed on how to move the scene view camera around in
Unity. They were also told about Unity’s flythrough Mode
[14]. To ensure that they actually understood how to nav-
igate the cameras, they were asked to move the camera to
three specific locations in the scene. This phase lasted 2-5
minutes.

Training with FCT
Before working with FCT, the facilitator gave a short oral
introduction of the framing concept by referring to a print-
out of Figure 3. Afterwards, the participants were asked
to open FCT. Here, the facilitator went through all of the
major features in a semi-structured way by explaining each
feature, one at a time, and having the participants try each
one.

A path was already defined in the scene (see Figure 9). The
participants learned about how to place and adjust the fram-
ings. They learned how to create and move influence points.
They then went through features such as changing the po-
sition and rotation of a camera using the different methods;
i.e., changing the values by hand; using the be the cam-
era feature; using the snapshot feature; and using the aim

point. In order to preview their changes, the participants
were shown the interactive preview and slider preview. Af-
terwards, they were introduced to the graph editor.

This phase lasted 15-20 minutes.

Tasks with FCT
After the participants had tried out all of the major features
in FCT, they were handed a piece of paper with five tasks.
The purpose of this phase was to check if the basic func-
tionality of FCT worked, based on whether the participants
could complete the tasks, and observing how difficult or easy
the tasks and functionalities were for the participants. The
tasks were:

1. Make the camera’s field of view change.
2. Make the camera tilt upwards.
3. Make the camera look at the tall pink cylinder.
4. Make the camera go from a low perspective to a bird’s-

eye view.
5. Change the interpolation of one of the previous assign-

ments by changing the animation curve.

These five points reflect common features and tasks that are
often used when setting up a framing and a camera interpo-
lation. The participants had to solve the tasks themselves;
the facilitator only intervened when the participant strug-
gled with something, asked a question, or if unforeseen errors
occurred with the tool.

This phase lasted 15-20 minutes.

Creative use of FCT
The participants were introduced to a scene with a mod-
elled environment. They were then tasked to envision and
sketch two ways for the camera to move as the player char-
acter moved through this environment. After drawing their
two sketches, they were asked to implement both of these
using FCT. The facilitator remained as neutral as possible
for this part of the evaluation, but still intervened if the
participant was struggling or encountered errors in the tool.
This semi-structured approach could potentially illustrate
shortcomings and missing functionalities of FCT.

This phase lasted 5-10 minutes.

Evaluation Questionnaire
The participants answered a short questionnaire about their
experience with FCT.

6



Figure 11: The participants drew sketches of camera movements in the creative phase during the evaluation.
There were no restrictions on how to do this; but most participants drew traditional storyboards. This
figure shows two different participants’ sketches and implementations in FCT. Participant A was part of
the participatory design group and had 4-6 years of Unity experience, while participant B was outside the
participatory design group and had less then six months Unity experience.

5.1.3 Materials
The Camera Path Animator [6] demo uses the “Angry Bots”
game provided by Unity [13]. It shows how the in-game
camera reacts to the position of the player.

Three scenes were constructed for the evaluation of FCT,
each with gradually more complex geometry (see Figure 9).
The first scene consists of simple boxes of various shapes and
colors. The second scene is a simple sandbox-like environ-
ment with a pre-defined path. Small rocks have been added
to make it easier to orientate oneself. The third scene de-
picts a mountainous environment with a staircase attached
to the mountainside, again with a pre-defined path. Con-
trary to the two previous scenes, this scene has variety in
both height and depth.

Two monitors were recorded using Open Broadcast Software
[11] and a webcam recorded the participants’ faces, together
with the audio.

5.2 Evaluation Questionnaire
The participants had varied experience with Maya, ranging
from six months to six years. Their experience with Unity
was less than a year, with a single exception of a participant
having 4-6 years of Unity experience.

The participants rated their agreement with a list of state-
ments using a 5-point Likert scale ranging from “strongly
disagree” to “strongly agree”.

When asked if the participants “felt empowered using the
tool”, four participants agreed, while the remaining two strongly
agreed. When asked if they “felt restricted using the tool”,
five participants disagreed while the remaining participant
strongly disagreed. When asked if they felt that they “got
the tasks done quickly”, four participants agreed and two
strongly agreed. To find out how effective the participants
felt using FCT, we asked them if they “felt the tool allowed
them to complete the tasks well”. Three participants agreed
and three strongly agreed.

Furthermore, they were asked whether they preferred the be
the camera or the snapshot feature for adjusting cameras.
Four chose be the camera and two chose snapshot. They

were also asked how useful they thought the preview fea-
tures were. The response choices were not useful, somewhat
useful, very useful, didn’t use any of them and don’t know.
Five participants found the preview features very useful, and
one found them somewhat useful. Finally, the participants
were asked what their overall favorite feature was. Three
participants noted the be the camera feature as their overall
favourite feature, while the slider preview was the favourite
for the other three participants.

To see the full demographic and evaluation questionnaire,
see the attached worksheets.

5.3 Discussion
Due to several factors, the results gathered from the evalua-
tion are not sufficient to draw statistically significant conclu-
sions. One of these factors is the low sample size of six par-
ticipants. Other factors include an artificial setting where
the participants had an unrealistic time to both learn and
be able to use FCT. Besides this, they also had to learn
the fundamentals of Unity, all within a time period of one
hour. Some of the participants believed they would be able
to learn the tool properly if they had a little more time
available. Ideally, the artists should have enough time to
become “advanced users” before the evaluation even began.
This would ensure that the evaluation would look into FCT’s
functionality instead of its usability.

One interesting note is that the participants used some of the
features in unexpected ways. For instance, one participant
used the aim point as a pivot point to orbit the camera
around. The feature was not designed with this in mind, but
it turned out to work rather well. This, together with other
instances, indicated that the participants had an interest in
learning and using FCT.

Even though the participants appeared to be able to cre-
ate the framings that they sketched in the creative phase,
it should be noted that they at this point already knew
about FCT’s strengths and weaknesses. This potentially
influenced what they sketched.

When comparing participants’ sketches to their implementa-
tion (see Figure 11), they appear very similar. Furthermore,

7



whether or not the participants belong to the participatory
design group seems to have little influence on their framings.
For instance, Figure 11 shows sketches and framings cre-
ated by one participant from the participatory design group
and one participant who was not from the participatory de-
sign group. Additionally, the amount of experience in Unity
seems to have little impact on the participants’ framings
since one of the participants in Figure 11 had 4-6 years of
experience in Unity, while the other had less than 6 months
of experience in Unity.

During the evaluation, one participant expressed that they
would be satisfied with fewer options, e.g., that it was un-
necessary to have both the be the camera and the snapshot
feature. The same goes for the multiple ways of preview-
ing. The participant found that the amount of options were
maybe too high and cluttered the interface. However, in
total, all features were used by the different participants;
hence, it would require further investigation to find out what
features were redundant.

Many of the features designed for FCT are based around
similar concepts in Maya. Therefore, the usability of FCT
may have given confounding results since all participants
have prior experience in Maya. FCT was not tested on par-
ticipants with no prior Maya experience.

6. SUMMARY AND FUTURE WORK
We have defined the basic requirements needed for a framing-
based camera tool built specifically for a game where the
player character’s movement is restricted to a path. Based
on our evaluation, the proposed camera tool lets the artist
design and create dynamic camera animations. The framing-
based camera tool proved versatile enough to accommodate
creative freedom and even usages not originally envisioned.

It is difficult to compare the gathered data from the dif-
ferent phases in training, tasks and creative work. Since
all of the phases had different purposes and time spans, it
doesn’t make sense to compare them against each other.
Two suggestions to improve the evaluation of what is pos-
sible to achieve with FCT are: a) Let the participants re-
create camera movements from other existing games; b) Let
the participants create camera movements inside Maya and
then re-create the same movements using FCT.

A limitation of the evaluation was the study of creativity,
i.e., how the artists were able to get an idea, sketch it out on
paper and then implement it with FCT. It raises the ques-
tion on how to judge creativity and quality. One approach is
to let professionals in the field of camera animation judge the
end results of the framings anonymously [12]. We encourage
more research into this field.

7. ACKNOWLEDGEMENTS
We would like to thank the artists that helped designing the
Framing-Based Camera Tool. We would also like to thank
Anja Perl and Emil Kjæhr from The Animation Workshop
in Viborg for making this collaboration possible.

8. REFERENCES
[1] Autodesk Maya Online Help. Graph Editor.

http: // download. autodesk. com/ us/ maya/

2009help/ index. html? url= Keyframes_ and_ the_

Graph_ Editor_ Using_ the_ Graph_ Editor. htm,

topicNumber= d0e12559 .

[2] Autodesk Maya Online Help. Look Through Selected.
http: // download. autodesk. com/ global/ docs/

maya2013/ en_ us/ files/ Basics_ Menus_ Panels_

_Look_ Through_ Selected. htm .

[3] K. Boedker, F. Kensing, and J. Simonsen.
Participatory IT Design - designing for business and
workplace realities. Viva Books Private Limited, 2006.

[4] O. Bourne, A. Sattar, and S. Goodwin. A
constraint-based autonomous 3d camera system.
Constraints, 13(1-2):180–205, 2008.

[5] P. Burelli and M. Preuss. Automatic camera control:
a dynamic multi-objective perspective. 2014.

[6] Camera Path Animator. Animate Cutscenes in Unity
with Ease. http: // support. jasperstocker. com/
camera-path-animator .

[7] M. Haigh-Hutchinson. Real-Time Cameras. CRC
Press, 2009.

[8] http://www.animwork.dk. Bachelor’s degree programs
at The Animation Workshop. http:
// www. animwork. dk/ en/ degree_ courses. asp .

[9] http://www.mobygames.com. Adventure. http:
// www. mobygames. com/ genre/ sheet/ adventure/ .

[10] F. Kensing and J. Blomberg. Participatory design:
Issues and concerns. Computer Supported Cooperative
Work (CSCW), 7:167–185, 1998.

[11] Obsproject.com. Open broadcaster software.
https: // obsproject. com/ .

[12] I. Sadeghi, H. Pritchett, H. W. Jensen, and
R. Tamstorf. An artist friendly hair shading system.
ACM Transactions on Graphics, 29(4):1, 2010.

[13] Unity. Angry bots. http:
// unity3d. com/ showcase/ live-demos# angrybots .

[14] Unity. Scene view navigation. http: // docs.
unity3d. com/ Manual/ SceneViewNavigation. html .

[15] Unity. Unity game engine. http: // unity3d. com/ .

[16] YouTube.com. God of War 3 Bonus Features - Camera
Design in HD. http: // youtu. be/ d13iQUmpXG0 .

8


